导读:今年要启动实施飞机发动机和燃气轮机重大专项(两机专项);大概要筹备建设2至3个国家级的技术创新中心,同时还要支持省一级技术创新中心的建设。航空发动机技术的突破,已经提升到带动“中国制造”全面走向世界的首要战略位置。高温合金和“一盘两片”技术的突破显得尤为重要和迫切。

  据了解,高温合金是航空发动机建造的关键材料,以其为材质生产的叶片、涡轮盘,是商用涡扇发动机等先进航空发动机的核心构件,其性能、品质直接决定了航空发动机的服役性能和可靠性。我国目前在高温合金母合金和粉末的制备方面相对落后,全球范围内能够生产航空航天用高温合金的企业不超过50家,主要集中在美、英、法、德、俄、日等国。

  两机重大专项的启动实施将助推我国航空发动机产业发展,给航空零部件和高温合金等材料带来巨大市场机遇。据中国金属学会高温材料分会统计,我国高温合金材料年需求量超过2万吨,而自主产量仅为1万吨。未来10年,我国高温合金材料的年需求量将超过40万吨,市场容量超过亿元人民币。

航空发动机中的材料

航空发动机的特点是体积小,功率大,各部件的工作条件严酷,特别是转动件在不同的温度、载荷、环境介质(空气,燃气)下工作,大多须用比强度高、耐热性好和抗腐蚀能力强的材料制造。

航空发动机的使用期限不尽相同,军用飞机发动机一般为~0小时;民用机发动机甚至要求1万小时以上,所用材料的组织和性能须保持长时间稳定。航空发动机早期采用铝合金、镁合金、高强度钢和不锈钢等制造;后期为适应增加发动机推力、提高飞机飞行速度的需要,钛合金、高温合金和复合材料相继得到应用。

合金

1、铝合金

钛合金是一种重要的新型结构材料,具有强度高、耐蚀性好、耐热性强等特点。钛合金主要用于飞机及发动机的制造材料,如锻造钛风扇、压气机盘和叶片、发动机罩、排气装置等零件以及飞机的大梁隔框等结构框架件。

主要应用位置:发动机舱、舱体结构、承载壁板、梁、仪器安装框架、燃料储箱等。

2、钛合金

与铝、镁、钢等金属材料相比,钛合金具有比强度很高、抗腐蚀性能良好、抗疲劳性能良好、热导率和线膨胀系数小等优点,可以在~℃以下长期使用,低温可使用到-℃。

主要应用位置:航空发动机的压气机叶片、机匣、发动机舱和隔热板等。

3、超高强度钢

超高强度钢具有很高的抗拉强度和足够的韧性,并且有良好的焊接性和成形性。

主要应用位置:航天发动机壳体、发动机喷管、轴承和传动齿轮。

4、镁合金

镁合金是最轻的金属结构材料,具有密度小、比强度高、抗震能力强、可承受较大冲击载荷等特点。

主要应用位置:航天发动机机匣、齿轮箱等。

5、高温合金

在现代先进的航空发动机中,高温合金材料用量占发动机总量的40%~60%。在航空发动机上,高温合金主要用于燃烧室、导向叶片、涡轮叶片和涡轮盘四大热段零部件,其中铸造高温合金主要用于导向叶片和涡轮叶片,粉末冶金高温合金主要用于涡轮盘,变形高温合金主要用于燃烧室;此外,高温合金还用于机匣、环件、加力燃烧室和尾喷口等部件。

涡扇发动机要达到更大推力、更低的油耗,首要的是提高增压比、提高热效率,涡轮前温度是衡量热效率的一个重要指标,对材料的承温能力要求也因此逐渐提高。为满足材料承温能力和力学性能的要求,高温合金在成分和工艺上不断研发改善,已经经历了从等轴晶,到柱状晶,再到单晶的发展历程。

目前,全球每年消费高温合金材料近28万吨,市场规模达亿美元。全球范围内能够生产航空航天用高温合金的企业不超过50家,主要集中在美国、俄罗斯、英国、法国、德国、日本和中国。发达国家一般将涉及航空航天应用领域的高温合金产品作为战略军事物资,很少出口。英国的铸造合金技术世界领先,代表性的是国际镍公司的Nimocast合金,后来罗罗公司又研制了定向凝固和单晶合金SRR99、SRR和SRR等,其研制的高温合金主要用在航空发动机制造方面。

复合材料

航空发动机的发展之快,尤其是越来越严苛的温度和重量要求,渐进提高的传统材料已然不能满足,转而呼唤材料科学开辟新的体系,那就是复合材料。根据复合材料各自的特点,可用于发动机不同的零部件上。

1、碳碳复合材料

C/C基复合材料,即碳纤维增强碳基本复合材料,它把碳的难熔性与碳纤维的高强度及高刚性结合于一体,使其呈现出非脆性破坏。由于它具有重量轻、高强度,优越的热稳定性和极好的热传导性,是当今最理想的耐高温材料,特别是在0-℃的高温环境下,它的强度不仅没有下降,反而有所提高。是近年来最受重视的一种更耐高温的新材料。最显著的优点是耐高温(大约℃)和低密度,可使发动机大幅度减重,以提高推重比。

目前已有应用,例如美国的F发动机上的加力燃烧室的尾喷管,F发动机的喷嘴及燃烧室喷管,F验证机燃烧室的部分零件已采用C/C基复合材料制造。法国的M88-2发动机,幻影型发动机的加力燃烧室喷油杆、隔热屏、喷管等也都采用了C/C基复合材料。

主要应用位置:碳碳复合材料如果能够解决表面以及界面在中温时的氧化问题,并能在制备时提高致密化速度,并降低成本,则有望在航空发动机中得到大量的实际应用。

2、陶瓷基复合材料(CeramicMatrixComposite,CMC)

高性能航空发动机追求不断提升涡轮前温度,对热端部件用材的高温强度、抗腐蚀性及抗氧化性能要求也越来越高,推重比15~20发动机的涡轮前温度将达到℃/K,耐温高、密度低、有类金属的断裂行为、对裂纹不敏感、不发生灾难性的损毁等优异性能的陶瓷基复合材料取代高温合金,满足热端部件在更高温度环境下使用,不仅有益于大幅减重,还可节约冷气甚至无需冷却,从而提高总压比,实现在高温合金耐温基础上进一步提升工作温度~℃,结构减重50%~70%。

替代高温合金作为发动机高温结构部件用材料,CMC具有诸多优势:(1)SiC/SiC密度为2.4~2.6g/cm3,仅相当于高温合金1/3程度,可有效降低结构重量;(2)耐温、能承受更高的工作温度,减少或省去冷却气体,从而提升涡轮效率;(3)可减少为降温而设置的附加结构,简化发动机结构设计;(4)因为冷却气流更少和燃烧室温度更高,燃烧将更为充分,排放气体中的CO和NOx的量更少,尾气更为洁净;(5)叶片可以有更高旋转速率,有益于更大推力;(6)高比强、高比模、高硬度、耐磨损、耐腐蚀;(7)高温抗氧化、抗烧蚀,具有高温热稳定的耐久性能;(8)热膨胀系数、热导率高,纤维和基体间热应力小。

但是CMC应用于航空发动机热端部件,高温和腐蚀性环境会对CMC造成损伤,进而降低其性能。需要通过在其表面涂覆环境阻隔涂层(EnvironmentalBarrierCoating,EBC),以阻隔材料组分与外部破坏性因素的反应,进而延长CMC使用寿命。EBC材料组分主要是金属氧化物或无机盐类化合物,通常有YSZ(ZrO2+8%Y2O3)、钡长石、莫来石+BSAS/Si等。罗罗公司的“Advance”和“UltraFan”发动机将采用碳纤维/钛风扇叶片,同时在高温组件中使用陶瓷基复合材料。前年(年),罗罗公司应用于Advance和UltraFan发动机的碳钛合金复合材料风扇叶片进行了首次装机试飞,标志着该项目达到又一里程碑。在位于美国亚利桑那州图森市的罗罗飞行试验台上,碳钛合金风扇叶片机组首次在遄达0“供体”发动机上装机试飞。

如前文所述,GE公司GE9X发动机中在GE9X燃烧室衬套、高压涡轮喷嘴、外环和涡轮叶片这些热端部件上使用CMC材料。(点击历史消息查看:牛叉哄哄!!GE9X航空发动机及其测试(高清视频))

主要应用位置:短期目标为尾喷管、火焰稳定器、涡轮罩环等;中期目标是应用在低压涡轮叶片、燃烧室、内锥体等;远期目标锁定在高压涡轮叶片、高压压气机和导向叶片等应用。

3、树脂基复合材料

先进树脂基复合材料是以高性能纤维为增强体、高性能树脂为基体的复合材料。与传统的钢、铝合金结构材料相比,它的密度约为钢的1/5,铝合金的1/2,且比强度与比模量远高于后二者。

主要应用位置:航空发动机冷端部件(风扇机匣、压气机叶片、进气机匣等)和发动机短舱、反推力装置等部件上得到广泛应用。

4、金属基复合材料

金属基复合材料主要是指以Al、Mg等轻金属为基体的复合材料。在航空和宇航方面主要用它来代替轻但有毒的铍。这类材料具有优良的横向性能、低消耗和优良的可加工性,已成为在许多应用领域最具商业吸引力的材料,并且在国外已实现商品化。

主要应用位置:适合用作发动机的中温段部件。

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

感谢您一直以来对“燃气轮机动力之源”



转载请注明地址:http://www.xiandaia.com/xdjtsj/6472.html